Two Classroom Dialogues : Excerpt 1

Excerpt 1: The Brownie Problem

Students in Ms. Carter's class were exploring the concept of equivalent fractions. The specific problem follows: The problem: I invited 8 people to a party (including me). My mother got home with 9 brownies. How much did each person get if everyone got a fair share?

Sarah: The first four, we cut them in half. [Jasmine divides squares in half on an overhead transparency. See figure below.]

Ms. Carter:
Now as you explain, could you explain why you did it in half?

Sarah:

Ms. Carter:

Sarah: Because when you put it in half it becomes ... eight halves

Eight halves. What does that mean if there are eight halves?
Each person gets half

Ms. Carter: Okay, that each person gets a half. [Jasmine labels halves 1-8 for each of the eight people.]
Sarah: Then there were five boxes [brownies] left. We put them in eighths.

Ms. Carter: Okay, so they divided them into eighths. Could you tell us why you chose eighths?
Sarah: It's easiest. Because then everyone will get ... each person will get a half and [whispers to Jasmine] How many eighths?
Jasmine: [Quietly to Sarah] 5/8.
Ms. Carter: I didn't know why you did it in eighths. That's the reason. I just wanted to know why you chose eighths.
Jasmine: We did eighths because then if we did eighths, each person would get each eighth, I mean $1 / 8$ out of each brownie.

Ms. Carter: Okay, 1/8 out of each brownie. Can you just, you don't have to number, but just show us what you mean by that? I heard the words, but ... [Jasmine shades in $1 / 8$ of each of the five brownies not divided in half.]
Jasmine:
Person one would get this ... [Points to one eighth.]
Ms. Carter
Sarah:

Ms. Carter:

Jasmine/Sarah:
Ms. Carter:
Oh, out of each brownie.
Out of each brownie, one person will get 1/8.
$1 / 8$. Okay. So how much then did they get if they got their fair share?
They got a $1 / 2$ and $5 / 8$.
Do you want to write that down at the top, so I can see what you did? [Jasmine writes $1 / 2+1 / 8+1 / 8+1 / 8+1 / 8+1 / 8$ at the top of the overhead projector.

The dialogue continues...

From Kazemi, E. (1998). Discourse that promotes conceptual understanding. Teaching Children Mathematics, 4(7), 410-414.

Two Classroom Dialogues : Excerpt 2

Excerpt 2: Fractions and Factors (from Truxaw, 2004)
Ms. Reardon is reviewing for a test with her seventh grade class.
Ms. Reardon: We're asked to rewrite 12 twenty-firsts in simple form. What do they mean? Don't give me an answer yet. But what do they mean by rewriting in simple form?
Steven: Turn it into the lowest fraction possible that equals the 12 twenty-firsts.
Ms. Reardon: Right. So, what is really getting smaller, not the fraction, but the...?
Class: Number
Ms. Reardon: The numbers themselves. I'm going to do something on a sidetrack for the moment. Can you guys list the factors of 12 for me? [T. writes on board as she speaks]. Factors of 12. Give me one pair. Lucas.
Lucas: $\quad 1$ and 12
Ms. Reardon: 1 and 12. And I like to list them as pairs. I find it easier, so I don't leave anything out. [Lists on board]
Sheila: $\quad 6$ and 2
Ms. Reardon: 6 and 2 [Lists on board.]
Roberto: $\quad 3$ and 4
Ms. Reardon: [T. lists on board]. Any others? [pauses for 5 seconds].
Ms. Reardon: Do you guys agree with this?
Class: Yeah.
Ms. Reardon: Any more?
Class: No.
Ms. Reardon: I'd like you to do the same thing for 21.
Student: $\quad 1 \& 21$ [almost inaudible]
Ms. Reardon: Uu- uh [indicating for S to stop speaking]... thank you. Hands... Garth.
Garth: $\quad 3$ and 7
Ms. Reardon: Okay [writes on board]
Joseph: Um, 1 and 21
Ms. Reardon: 1 and 21. Okay. Any others? [pauses]
The verbal exchanges continue similarly, finding the common factors of 21. Then...
Ms. Reardon: Now I want to know...common factors...hmmm...what do I mean by common? Amanda?
Amanda: You see them more than once.
Ms. Reardon Yes. We have it once here and once here. I'm going to circle and then write it over here [as a separate list]. Somebody tell me one number that appears in both lists.
Taylor: One.
Ms. Reardon: Breanna?
Breanna: Three
Ms. Reardon: [pauses, circling the common factors] No more?
Class: [No response.]
Ms. Reardon: Good. Okay. Put the extra comma in, in here. Now, I want the greatest...common factor [writes on board] Sometimes abbreviated GCF. Greatest common factor. Everybody!

The dialogue continues...
From Truxaw, M. P., \& DeFranco, T. C. (2008). Mapping mathematics classroom discourse and its implications for models of teaching. Journal for Research in Mathematics Education, 39, 489-525.

