
A.

B.

D.

E.

F.

H.

c. Shade $\frac{1}{2}$ of the area of rectangle in a way that is different from the rectangles above.

d. Shade $\frac{2}{3}$ of the area of the rectangle in a way that is different from the rectangles above.

b. for the fraction $A-H$ yow would the part + Shadid in ex A it's $\frac{1 \text { only one is shadid in and }}{\text { G youpuld cont the roast. }}$

$$
i \quad B: \frac{1}{2}, 4, \frac{2}{6}
$$

ontilleq with models for each

with models for each
I know these fractions are equivalent because the shaded area for each equivalent fraction is the same (amount).

7 'models denonstrote understerols of comparison of equivalent wides. Clearly labeled models

b. What fraction of the area of each rectangle is shaded blue? Name the fraction in as many ways as you can. Explain your answers.
A.

B.

Q.

E.

Q.

Student 3

1. $2 \times 3=6$ The formula for area is $L \times t=A$ $5 A-\frac{1}{6} \frac{2}{12} \frac{4}{2946} \frac{6}{96} \frac{39}{92} \frac{64}{384} \frac{128}{768} \frac{254}{536}$ each time Inmate. the fraction smaller, but wall of the fractions listed above are equal $b B, \frac{1}{2} \frac{2}{4} \frac{3}{6} \frac{1}{8} 10 \frac{6}{12} \frac{7}{16} \frac{8}{18} \frac{10}{20} \frac{11}{22} \frac{2}{24} \frac{13}{26} \frac{14}{28} \frac{15}{50} \frac{16}{32} \frac{17}{34}$ $\frac{18}{36}$ (I cankeep going but that would take a while.) all of these fractions are equal because the yare halves.
$6 C \frac{1}{3} \frac{2}{6} \frac{3}{12} \frac{4}{24} \frac{5}{46} \frac{6}{96} \frac{7}{142} \frac{8}{384} \frac{9}{766} \frac{1}{1536}$ all x these e are equal, and they al can be reduced to ards (ekpt for The $\frac{1}{3}$).
 and camber reduced fo 150 these are all equal
$b\left[\frac{1}{2} \frac{18}{36}\right.$ all ofthe tract forth $\frac{1}{3}$) $b\left[\frac{1}{2}-\frac{18}{36}\right.$ all ofthe fractions are halves
$b=\frac{1}{2}-\frac{18}{36}$ all of the fractions are halves. $b=\frac{1}{2}-\frac{18}{36}$ all of the fractions are halves.
Q $+\frac{1}{2} \frac{16}{36}$ all of the fractions are equal because they ard $-1+1 \frac{4}{6} \frac{86}{12} \frac{163264128}{24} \frac{38}{46192}$ all σ these factors are equal because if reduced, all can come to $\frac{19}{6}$
