a. A small square is a square unit. What is the uncompared tangle? Explain. He area of each rectangle is shaded blue? Name the fraction in as many ways as you can. Explain your answers.	Set
ways as you can. Explain your answers.	er imet
1 A. B. 1	,
2 c. 2	

F,

c. Shade $\frac{1}{2}$ of the area of rectangle in a way that is different from the rectangles above.

E.

G.

d. Shade $\frac{2}{3}$ of the area of the rectangle in a way that is different from the rectangles above.

B: \(\frac{1}{2}, \frac{3}{6}\)

With models for each

Pullytor + +

Cri 3, \(\frac{2}{6}\), \(\frac{3}{7}\)

With models for each

with models for each

I know these fractions are equivalent because the shaded poets area for each equivalent fraction is the same (amount).

> wooleds demonstrate understands of comparison of equivalent wholes. Clearly lakeled models

June 12,2012

2

Student 3

b. What fraction of the area of each rectangle is shaded blue? Name the fraction in as many ways as you can. Explain your answers.

c. Shade $\frac{1}{2}$ of the area of rectangle in a way that is different from the rectangles above.

d. Shade $\frac{2}{3}$ of the area of the rectangle in a way that is different from the rectangles above.

[x3=6. The formula for area is Lx W=A DA 6 12 25/18 96 92384 468 1530 each time I make Dit 6 12 2016 96 192387 468 1536

The fraction smaller by wall of the fractions

tisted above are equal to 11 12 13 14 15 16 14

DB, 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 (I can keep going but that would take a while) of these fractions care equal because they are C 3 6 72 24 43 9 6 74 8 9 16 011 & these are equal, and they all can be reduced to 3 to 5 (evept for the 1) and cambe reduced to these are all egold and cambe reduced to the exert for the 1). 2 18 all of the fractions are halves. 15 all of the fractions are equal because they are halves 1-14 8 163201128 all of these factions are equal because if reduced, all can come to