Name: \qquad Date: \qquad Period: \qquad

Geometry - Pythagorean Theorem Warm-Up

Directions: Using what you know about Pythagorean Theorem, find the missing variables.

1. $\mathrm{w}=$ \qquad

2. $\mathrm{Z}=$

3. Now, consider your answer for z in \#2. Write a mathematical argument to justify your answer.
\qquad
\qquad
\qquad
\qquad

Name: \qquad Date: \qquad Period: \qquad

Geometry - Pythagorean Theorem Warm-Up

Directions: Using what you know about Pythagorean Theorem, find the missing variables.

1. $\mathrm{w}=$

2. $\mathrm{z}=$ \qquad

3. $6^{2}+2^{2}=w^{2} \quad 36+4=w^{2} \quad 40=w^{2} \quad \sqrt{40}=w \quad \sqrt{40}=2 \sqrt{ } 10$
4. $7^{2}+z^{2}=25^{2} \quad 49+z^{2}=625 \quad z^{2}=625-49 \quad z^{2}=576 \quad \sqrt{z^{2}}=\sqrt{576} \quad \mathrm{z}=24$
5. Now, consider your answer for z in \#2. Write a mathematical argument to justify your answer.

Because the triangle in \#2 is a right triangle, I can use the Pythagorean Theorem to solve for z. I knew I was solving for a leg, so I can put z in for " b " in the Pythagorean Theorem. I set up the equation as $7^{2}+z^{2}=25^{2}$ and solved to get $z=24$.

The answer should include:

- Using the Pythagorean Theorem because it's a right triangle
- Identifying the missing side as either the leg or hypotenuse, and connecting it to their equation ("leg means a or b", "c means hypotenuse", or z is a leg so I used the equation

$$
\left.7^{2}+z^{2}=25^{2}\right)
$$

