Julia's Reflections

Julia is tired of reflecting over the x and y axes all the time, so she decides to try reflecting some triangles over the line y = x. (shown below as a dotted line) This is what she comes up with:

Write in the coordinates of each original point and its corresponding reflection.

A: (-4, 4)

A': <u>(4, -4)</u>

B:_____

B':_____

C: _____

C':_____

D: _____

D':_____

E: _____

E':_____

F: _____

F':_____

G: _____

G':_____

H: _____

Н':_____

1: _____

I': _____

Do you think Julia's reflections are correct? Why or why not?

Julia now wants to come up with a rule for reflecting over the line y = x. Based off of her three reflections, this is what she comes up with:

Whenever you reflect over the line
$$y=x$$
, you have to add 3 to x and subtract 3 from y . I know this because $(-1, 2)$ reflected to $(2, -1)$, $(-3, 0)$ reflected to $(4, 1)$.

Do you agree or disagree with Julia? Using evidence from her work, write an argument to support why you think she is correct or incorrect.

1 agree / disagree (circle one) with Julia because				
One example that	suppor	ts / contradicts	(circle one) Julia's pattern is	