Name:	_ Date:	Period:
-------	---------	---------

Geometry – Proof Practice

1. Given: $\sphericalangle CAB \cong \sphericalangle EDB$,

$$\overline{AB}\cong \overline{DB}$$

Prove: $\triangle ABC \cong \triangle DBE$

Statement	Reason
$\sphericalangle CAB \cong \sphericalangle EDB$	Given
$\overline{AB} \cong \overline{DB}$	Given
$\sphericalangle CBA \cong \sphericalangle EBD$	Vertical angles are congruent
$\Delta ABC \cong \Delta DBE$	ASA Postulate

2. Given: D is the midpoint of \overline{AC} , $\triangleleft ADB \cong \triangleleft CDB$

Prove: $\triangle ABD \cong \triangle CBD$

Statement	Reason
D is the midpoint of \overline{AC}	Given
	Given
$\overline{AD}\cong \overline{CD}$	Definition of midpoint
$\overline{BD}\cong \overline{BD}$	Reflexive Property
$\Delta ABD \cong \Delta CBD$	SAS Postulate

3. Given: C is the midpoint of \overline{AD} , C is the midpoint of \overline{BE}

Prove: $\triangle ABC \cong \triangle DEC$

Statement	Reason	
C is the midpoint of \overline{AD}	Given	
C is the midpoint of \overline{BE}	Given	
$\overline{BC} \cong \overline{EC}$	Definition of midpoint	
$\overline{AC} \cong \overline{DC}$	Definition of midpoint	
$\sphericalangle ACB \cong \sphericalangle DCE$	Vertical angles are congruent	
$\Delta ABC \cong \Delta DEC$	SAS Postulate	

4. Given: $\overline{BC} \mid \mid \overline{AD}, \not \triangleleft B \cong \not \triangleleft D$

Prove: $\triangle ABC \cong \triangle CDA$

Statement	Reason
$\overline{AC} \mid \mid \overline{DC}$	Given
$\sphericalangle ABC \cong \sphericalangle CDA$	Given
$ \sphericalangle DAC \cong \blacktriangleleft BCA $	Parallel lines make Alternate Interior Angles congruent.
$\overline{AC} \cong \overline{AC}$	Reflexive Property
$\Delta ABC \cong \Delta CDA$	AAS Postulate